Softlog Systems (2006) Ltd.

ICP Family Programmers

User's Manual

IMPORTANT NOTE:

- Starting from Sep-2016 Softlog Systems manufactures ICP2(G3), ICP2-GANG(G3) and ICP2-COMBO(G3) programmers additionally to existing ICP2, ICP2-GANG and ICP2-COMBO
- Starting from Jul-2018 Softlog Systems manufactures ICP2-Portable (G3) programmer additionally to existing ICP2-Portable
- Due to nearly full compatibility all of them are referred below as ICP2, ICP2-GANG, ICP2-COMBO and ICP2-Portable respectively. If difference is applied then they are referred as "G3 products" and "non-G3 products"

1	Connectors	3	3
	.1 "Power" Connector (Power Jack, Center Pin 2.1mm)	3	3
	.2 "USB" Connector	3	3
	.3 "LAN" Connector: Standard RJ-45	3	3
	.4 "RS-232 IN" Connector (Standard D-type 9 Female)	3	3
	.5 "RS-232 OUT" Connector (Standard D-type 9 Male)	3	3
	.6 "Control Interface" Connector (DIN-64 A,B Male)		
	.7 "TARGET" Connector D-type 15 Female: all programmers excluding ICP2-COMBO		
	.8 ICP2-COMBO only: "TARGET" Connector (DIN-48, A,B,C, male), 3 Identical Connectors		
	.9 Typical Connection to "TARGET" Connector		
2	PC-Driven and Standalone Modes		
3	Chain Connection (ICP2-GANG and ICP2-COMBO)	7	,
4	PASS/FAIL LEDs and Outputs		
5	Other LEDs (ICP2-Portable)	8	3
6	Standalone Operation without PC		
7	Host Computer Requirements		
8	Installation		
	.1 Important Note		
	.2 Preliminary Installation		
	8.2.1 Software Installation		
	8.2.2 Preliminary Hardware Installation		
	.3 ICP2-GANG Setup		
	.4 ICP2-COMBO Setup		
	.5 ICP2-Portable Setup		
	.6 ICP2/ICP2(HC) Software Setup		
	.7 FTDI Driver Latency		
9	(Placeholder Paragraph)		
10 11	Checksum Calculation and Programming Buffers		
	Control Center		
	1.2 Control Center in Standalone Mode		
12	Menu Commands		
	2.1 File Menu (Alt-F)		
	2.2 Edit Menu (Alt-E)		
	2.3 Environment (Alt-P)		
	2.4 Serialization Menu (Alt-S)		
	2.5 Device Menu (Alt-D)		
	2.6 Programmer Menu (Alt-G)		
	2.7 Run Menu (Alt-R)		
	2.8 Communication Menu (Alt-C)		
	2.0 Communication World (Ait O)	1 1	

12.9	Options Menu (Alt-O)	
12.10		
12.1°		
13 14	ShortcutsPreparing and Transferring Environment to Programmer	
14.1	Prepare and Transfer Environment with Wizard	
14.2	Prepare and Transfer Environment Manually	
14.3	ICP2-GANG and ICP2-COMBO: Transfer Different Environments to Different Channels	
15	Viewing Environment	
16	Serialization	
16.1	Create Serialization File	
16.2	Serialization File Example 1	15
16.3	Serialization File Example 2 (User File Scheme)	16
16.4	Enable Serialization	
16.5	Disable Serialization	
16.6	Standalone Serialization	
17	Options → Voltages	
17.1	Vdd Source and VddProg Mode	
17.2	Vpp Voltage	
17.3 17.4	Vdd-to-Vpp DelayICP-01 Compatibility	
17.4	Options → Clock/Data/MCLR(Advanced)	
18.1	MCLR/VPP Idle State	
18.2	Clock/Data Idle State	
18.3	Clock Speed	
18.4	ICP-01 Compatibility	
	Options → Preferences	
19.1	Blank check before programming []	19
19.2	Bulk erase device before programming [x]	
19.3	Row erase device before programming []	
19.4	Exclude DM (EEPROM) from row erase []	
19.5	Check MOVLW/RETLW of calibration word [x]	
19.6	Enhanced ICSP™ Programming [x]	
19.7	Auto select one PM (flash) range []	
19.8	Gap Eliminator™ for PM (flash) [x]	
19.9 19.10	Auto select one DM (EEPROM) range [] D Gap Eliminator™ for DM (EEPROM) [x]	
19.1		
19.12	· · · · · · · · · · · · · · · · · · ·	
19.13	·	
20	Gap Eliminator™	
20.1	Overview	
20.2	How It Works	
20.3	Example of HEX File with Gaps	
21	Speed Optimization Utility	
22	Configuration File	
23	Command Line Parameters (GUI)	
24	DLL Functions	
25 26	Command Line Interface (non-GUI)	
26 27	Secure Programming	
27.1	Standard LAN ConfigurationLAN Configuration	
27.1		
28	Advanced LAN Configuration	
28.1	Advanced IP Configuration	
28.2	Advanced CPR Configuration	
29	Manual Production Mode (One-Touch Operation)	
30	In-Circuit Programming	
30.1	Vdd	
30.2	Vpp	
30.3	CLOCK and DATA	
30.4	Delay between Vdd and Vpp	31

31	Target Cable	31
32	Appendix A: Power Supply	
33	Appendix B: Return Values (Errorcodes)	31
34	Appendix C: DEBUG and COE Bits	
35	Appendix D: System Debug Procedure	
36	Revision History	
37	Technical Assistance	
38	Warranty	35
39	Contact	
40	Copyright Notice	35
	1,7,0	

1 Connectors

1.1 "Power" Connector (Power Jack, Center Pin 2.1mm)

Pin No.	Pin Name: ICP2-GANG, ICP2-COMBO	Pin Name (ICP2, ICP2(HC), ICP2-Portable)	Voltage Range
1/center	POWER (+)	POWER (+/-)	12V to 15V
2	POWER (-)	POWER (+/-)	

1.2 "USB" Connector

ICP2-Portable(G3) only: Mini-USB
 Other programmers: USB Type-B
 Note: galvanically isolated on ICP2-COMBO

1.3 "LAN" Connector: Standard RJ-45

Note: available on ICP2-COMBO only

1.4 "RS-232 IN" Connector (Standard D-type 9 Female)

Notes:

- not available on ICP2-Portable

- galvanically isolated on ICP2-COMBO

Pin No.	Pin Name	Voltage Range	Pin Type	Description
1	-	-	-	Not connected
2	PC_RXD	RS-232 level	RS-232 output	TxD output to PC
3	PC_TXD	RS-232 level	RS-232 input	RxD input from PC
4	PC_DTR	-15V to +15V	Power	ICP2-GANG, ICP2-COMBO: not connected ICP2/ICP2(HC): additional power supply input
5	GND	-	GND	Ground connection
6	12V_OUT	11-14VDC	Power	ICP2-GANG: power output ICP2/ICP2(HC)/ICP2-COMBO: not connected
7,8,9	-	-	-	Not connected

1.5 "RS-232 OUT" Connector (Standard D-type 9 Male)

Note: available on ICP2-GANG only

Pin No.	Pin Name	Voltage Range	Pin Type	Description
1	-	-	-	Not connected
2	CHAIN_232_RXD	RS-232 level	RS-232 input	RxD input from next ICP2-GANG
3	CHAIN_232_TXD	RS-232 level	RS-232 output	TxD output to next ICP2-GANG
4	-	-	-	Not connected
5	GND	-	GND	Ground connection
6,7,8,9	-	-	-	Not connected

Rev: 8.8.1a Jul-2018 Page 3 of 35

1.6 "Control Interface" Connector (DIN-64 A,B Male)

Notes:

- available on ICP2-COMBO only
- all voltages are referenced to isolated GND (GND_ISO)

Mating connector: 09022646421 (Harting) - DIN41612, 2 rows, 64 pins, female, B style, receptacle, straight

Pin No.	Pin Name	Pin Type	Description
A1	-	·	2000
B1	5V_ISO	5V reference source	Isolated 5V with in-series fuse 50mA, can be used to
			control ENV_SEL_A/B/C_ISO lines
A2	GND_ISO	-	Isolated GND
B2	GND_ISO	-	Isolated GND
A3	PC_RXD_ISO	Standard RS-232 output	RS-232 output to PC
B3	PC_TXD_ISO	Standard RS-232 input	RS-232 input from PC
A4	CHAIN_232_RXD_ISO	Standard RS-232 input	RS-232 input from chained ICP2-COMBO(G3)
B4	CHAIN_232_TXD_ISO	Standard RS-232 output	RS-232 output to chained ICP2-COMBO(G3)
A5	GND_ISO	-	Isolated GND
B5	GND_ISO	-	Isolated GND
A6	ENV_SEL_A_ISO	CMOS input (0/5V) with weak pull-down	Environment selection (bit 0)
B6	ENV_SEL_B_ISO	CMOS input (0/5V) with weak pull-down	Environment selection (bit 1)
A7	ENV_SEL_C_ISO	CMOS input (0/5V) with weak pull-down	Environment selection (bit 2)
B7	-	-	-
A8	-	-	-
B8	GND_ISO	-	Isolated GND
A9	GO_ISO_1	CMOS input (0/Z) with weak pull-up	Ch. 1: programming activation (active low)
B9	GO_ISO_2	CMOS input (0/Z) with weak pull-up	Ch. 2: programming activation (active low)
A10	GO_ISO_3	CMOS input (0/Z) with weak pull-up	Ch. 3: programming activation (active low)
B10	GO_ISO_4	CMOS input (0/Z) with weak pull-up	Ch. 4: programming activation (active low)
A11	GO_ISO_5	CMOS input (0/Z) with weak pull-up	Ch. 5: programming activation (active low)
B11	GO_ISO_6	CMOS input (0/Z) with weak pull-up	Ch. 6: programming activation (active low)
A12	GO_ISO_7	CMOS input (0/Z) with weak pull-up	Ch. 7: programming activation (active low)
B12	GO_ISO_8	CMOS input (0/Z) with weak pull-up	Ch. 8: programming activation (active low)
A13 B13	GO_ISO_9 GO_ISO_10	CMOS input (0/Z) with weak pull-up CMOS input (0/Z) with weak pull-up	Ch. 9: programming activation (active low)
A14	GO_ISO_I0	CMOS input (0/Z) with weak pull-up	Ch. 10: programming activation (active low) Ch. 11: programming activation (active low)
B14	GO_ISO_11 GO_ISO_12	CMOS input (0/Z) with weak pull-up	Ch. 12: programming activation (active low) Ch. 12: programming activation (active low)
A15	-	- CiviOS iriput (0/2) with weak pull-up	- cri. 12: programming activation (active low)
B15	- -	- -	- -
A16	- -	- -	-
B16	-	-	-
A17	PASS ISO 1	CMOS output with in-series R=330Ω	Ch. 1: pass/busy indication
B17	PASS_ISO_2	CMOS output with in-series R=330Ω CMOS output with in-series R=330Ω	Ch. 2: pass/busy indication
A18	PASS ISO 3	CMOS output with in-series R=330Ω	Ch. 3: pass/busy indication
B18	PASS_ISO_4	CMOS output with in-series R=330Ω	Ch. 4: pass/busy indication
A19	PASS_ISO_5	CMOS output with in-series R=330Ω	Ch. 5: pass/busy indication
B19	PASS_ISO_6	CMOS output with in-series R=330Ω	Ch. 6: pass/busy indication
A20	PASS_ISO_7	CMOS output with in-series R=330Ω	Ch. 7: pass/busy indication
B20	PASS_ISO_8	CMOS output with in-series R=330Ω	Ch. 8: pass/busy indication
A21	PASS_ISO_9	CMOS output with in-series R=330Ω	Ch. 9: pass/busy indication
B21	PASS_ISO_10	CMOS output with in-series R=330Ω	Ch. 10: pass/busy indication
A22	PASS_ISO_11	CMOS output with in-series R=330Ω	Ch. 11: pass/busy indication
B22	PASS_ISO_12	CMOS output with in-series R=330Ω	Ch. 12: pass/busy indication
A23	-	-	-
B23	-	-	-
A24	-	-	-
B24	-	-	-
A25	FAIL_ISO_1	CMOS output with in-series R=330Ω	Ch. 1: fail/busy indication
B25	FAIL_ISO_2	CMOS output with in-series R=330Ω	Ch. 2: fail/busy indication
A26	FAIL_ISO_3	CMOS output with in-series R=330Ω	Ch. 3: fail/busy indication
B26	FAIL_ISO_4	CMOS output with in-series R=330Ω	Ch. 4: fail/busy indication
A27	FAIL_ISO_5	CMOS output with in-series R=330Ω	Ch. 5: fail/busy indication
B27	FAIL_ISO_6	CMOS output with in-series R=330Ω	Ch. 6: fail/busy indication
A28	FAIL_ISO_7	CMOS output with in-series R=330Ω	Ch. 7: fail/busy indication
B28	FAIL_ISO_8	CMOS output with in-series R=330Ω	Ch. 8: fail/busy indication
A29	FAIL_ISO_9	CMOS output with in-series R=330Ω	Ch. 9: fail/busy indication
B29	FAIL_ISO_10	CMOS output with in-series R=330Ω	Ch. 10: fail/busy indication
A30	FAIL_ISO_11	CMOS output with in-series R=330Ω	Ch. 11: fail/busy indication

Rev: 8.8.1a Jul-2018 Page 4 of 35

Pin No.	Pin Name	Pin Type	Description
B30	FAIL_ISO_12	CMOS output with in-series R=330Ω	Ch. 12: fail/busy indication
A31	-	-	-
B31	-	-	-
A32	-	-	-
B32	-	-	-

1.7 "TARGET" Connector D-type 15 Female: all programmers excluding ICP2-COMBO

Notes: ICP2-GANG - 4 identical channels

ICP2/ICP2(HC)/ICP2-Portable - 1 channel

Pin No.	Pin Name	Voltage Range	Pin Type	Description
1	T_VDD	O 2.0V to 5.5V Output or input with weak pull-down and programmable strong pull-down		Target VDD supply voltage
2	GND	-	-	Ground connection
3	T_SCK (4)	2.0V to 5.5V	CMOS output or input with weak pull-down	Target clock
4	T_MOSI (4)	2.0V to 5.5V	CMOS output or input with weak pull-down	Target data
5	T_MISO (4)	2.0V to 5.5V	CMOS output or input with weak pull-down	Target data, internally connected to T_MOSI
6	T_VPP/MCLR	2.0V to 13.5V	Output or input with weak pull-down	Target VPP supply voltage
7	T_TARG (2)	5.0V	CMOS output	General purpose output
8	T_VTEST (non-G3 products)	2.0V to 13.5V	Output	Target VTEST signal for PIC17Cxxx family
	T_DIO_2 (G3 products)	2.0V to 5.5V	Output or input with weak pull-down	Target I/O number 2
9	T_DIO_0	2.0V to 5.5V	CMOS output or input with weak pull-down	Target I/O number 0 Non-G3 products: FOSC signal for PIC17Cxxx family
10	T_DIO_1	2.0V to 5.5V	CMOS output or input with weak pull-down	Target I/O number 1
11	GND	-	-	Optional ground connection
12	GND (1)	-	-	Optional ground connection
13	GO (1,3)	0-1.0V or N/C	CMOS input with pull-up 10K	Input for programming activation in standalone mode
14	PASS_OUT(1,3)	5.0V	CMOS output Output for pass/fail/bu indication	
15	FAIL_OUT (1,3)	5.0V	CMOS output	Output for pass/fail/busy indication

Notes:

- (1) Dedicated for standalone operation without PC
- (2) Not available on ICP2-Portable
- (3) Optional for ICP2-Portable, contact Softlog Systems for details
- (4) G3 products additionally contain strong programmable pull-up and pull-down resistors

Rev: 8.8.1a Jul-2018 Page 5 of 35

1.8 ICP2-COMBO only: "TARGET" Connector (DIN-48, A,B,C, male), 3 Identical Connectors

Mating connector: 86093488314755V1LF (FCI) - DIN41612, 3 rows, 48 pins, female, C/2 style, straight

	Pin Number			Pin Name	Opto-	Pin Type	Description
CH. 1 CH. 5 CH. 9	CH. 2 CH. 6 CH. 10	CH. 3 CH. 7 CH. 11	CH. 4 CH. 8 CH. 12		relay barrier		
A1	A5	A9	A13	T_VPP/ MCLR	Yes	Power output or input with weak pull-down	Target VPP/MCLR supply voltage
A2	A6	A10	A14	T_SCK (4)	Yes	CMOS output or input with weak pull-down	Target clock
A3	A7	A11	A15	T_MOSI (4)	Yes	CMOS output or input with weak pull-down	Target data
A4	A8	A12	A16	T_DIO_0	Yes	CMOS output or input with weak pull-down	Target I/O number 0 Non-G3 products: FOSC signal for PIC17Cxxx family
B1	B5	B9	B13	T_DIO_1	Yes		
B2	B6	B10	B14	T_MISO (4)	Yes	CMOS output or input with weak pull-down	Target data, internally connected to T_MOSI
B3	B7	B11	B15	T_VTEST (non-G3 products)	Yes	Output	Target VTEST signal for PIC17Cxxx family
				T_DIO_2 (G3 products)		CMOS output or input with weak pull-down	Target I/O number 2
B4	B8	B12	B16	T_VDD			Target VDD supply voltage
C1	C5	C9	C13	GND_SW			Ground connection via opto-relay barrier
C2, C3	C6, C7	C10, C11	C14, C15	GND			Ground connection
C4	C8	C12	C16	T_TARG	-	CMOS output	General purpose output

Notes:

(4) G3 products additionally contain strong programmable pull-up and pull-down resistors

1.9 Typical Connection to "TARGET" Connector

TARGET Pin	PIC10/12/16/18/24 dsPIC®/PIC32 (see Note 1)	I2C	Keeloq®	PIC17 (non-G3 only)	SPI Flash (G3 only) (see Note 2)	SWD (G3 only)	UPDI (G3 only)	TPI (G3 only)
T_VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD
GND	GND	GND	GND	GND	GND	GND	GND	GND
T_SCK	CLOCK (PGC)	SCL	CLOCK	CLOCK (PGC)	SCK	SWCLK	-	TPICLK
T_MOSI	DATA (PGD)	SDA	DATA	DATA (PGD)	SI	SWDIO	UPDI	TPIDATA
T_MISO	-	-	-	-	SO	-	-	-
T_VPP	MCLR/VPP	-	-	MCLR/VPP	-	RESET	-	RESET
T_TARG	-	-	-	-	-	-	-	-
T_VTEST	-	-	-	VTEST	-	-	-	-
T_DIO_0	-	-	-	FOSC	-	-	-	-
T_DIO_1	-	-	S1	-	=	-	-	-
T_DIO_2	-	-	-	-	CE (chip select)	-	-	-

Rev: 8.8.1a Jul-2018 Page 6 of 35

IMPORTANT:

Note 1 - dsPIC33/PIC24 devices: in order to use Enhanced ICSP™, a pull-down resistor 3.3K-10K Ohm must be placed between T_MOSI (PGD) and GND. If your PCB contains a PGD pull-up resistor then value of the resistor should be about 20% of the pull-up resistor but not less than 1.5K Ohm Note 2 - SPI flash: external resistors and capacitors must be added for proper operation – see SPI Flash Release Notes or contact Softlog Systems: support@softlog.com

2 PC-Driven and Standalone Modes

ICP family programmers can be operated in PC-driven and/or standalone mode

Programmer	PC-Driven	Standalone
ICP2/ICP2(HC)	Yes	Yes
ICP2-GANG	Yes (single channel only)	Yes
ICP2-COMBO	Yes (single channel only)	Yes
ICP2-Portable	Yes	Yes
ICP-01	Yes	No

PC-driven mode means that all programming parameters and data are set in **PC** and the PC executes required sequences (programming, verification, blank check, etc.)

Standalone mode means that all programming parameters and HEX file data ("Environment", "PJ2 file") are saved in **programmer's** non-volatile flash memory. See paragraph 14 "Preparing Environment and Transferring Environment to Programmer".

Standalone programming can be activated by 2 ways:

- from PC
- by GO input on the programmer unit (NOTE: optional on ICP2-Portable)

True parallel multi-channel programming can be done in standalone mode only

3 Chain Connection (ICP2-GANG and ICP2-COMBO)

Number of channels can be increased (up to 64 channels) by daisy chain connection between ICP2-GANG or ICP2-COMBO units.

ICP2-GANG: see "ICP2-GANG Quick Start" manual for details

ICP2-COMBO: contact Softlog Systems for details

IMPORTANT: all programmer units should have the <u>same</u> (all=yes or all=no) "DLL/Command Line Support" option

Rev: 8.8.1a Jul-2018 Page 7 of 35

4 PASS/FAIL LEDs and Outputs

###	Conditions	PASS LED	FAIL LED	PASS Output	FAIL Output
1.	Power-up	2 sec ON		2 sec ON	
2.	Operation in-progress (busy)	ON		ON	
3.	Programming done: PASS	ON	OFF	ON	OFF
4.	Programming done: FAIL (verification error)	OFF	ON	OFF	ON
5.	UUT problem during operation: - Vdd overload - Vpp overload - I2C communication error	OFF	Blink	OFF	ON
6.	Non-UUT problem during standalone operation: - database error - device not supported - no Keeloq® support - no dsPIC® support - etc.	OFF	Blink	OFF	OFF
7.	No firmware presents (bootloader only)	Slow blink	OFF	OFF (not suppo	orted)
8.	Firmware upgrade in-progress	Fast blink	OFF	OFF (not suppo	orted)

5 Other LEDs (ICP2-Portable)

See "ICP2-Portable Quick Start.pdf"

6 Standalone Operation without PC

- Prepare an environment and transfer to programmer see paragraph 14 for details NOTE: once the environment is saved in **non-volatile** memory it's automatically ready for programming
- Short pin GO to GND for at least 100ms to start programming
- Observe PASS/FAIL LEDs or/and pins PASS_OUT and FAIL_OUT see paragraph 4 for details

7 Host Computer Requirements

- Pentium-4 or greater IBM PC compatible
- Resolution 1024x768 or higher
- 1GB of RAM
- Windows-7/8/10. Contact Softlog Systems for operation with Win-95/98/NT/2000/XP/Vista/
- At least 200MBytes of hard disk space
- Free USB port or RS-232 port (all programmers excluding ICP2-Portable)

8 Installation

8.1 Important Note

In the past the default directory was specified as "C:\Program Files\Soft-Log\...

Starting from version 4.13.1a Jan-2015 ICP family software will be installed to a default directory C:\Softlog\ which allows to avoid virtual storage of CFG and INI files

Rev: 8.8.1a Jul-2018 Page 8 of 35

8.2 Preliminary Installation

8.2.1 Software Installation

Visit our site and get the latest software: http://www.softlog.com → Support

8.2.2 Preliminary Hardware Installation

- Connect the programmer to its power supply (not required for ICP2-Portable and ICP2)
- Connect RS-232 or USB cable between PC and the programmer
- Install USB driver according to "USB Driver Installation" instruction
 NOTE: USB driver installation is not required for operation with RS-232 port
- Note: the latest USB drivers are available from:

CP210x: http://www.silabs.com/Support%20Documents/Software/CP210x_VCP_Windows.zip

FTDI: http://www.ftdichip.com/Drivers/VCP.htm

IMPORTANT:

- disconnect ICP2 from USB
- install the driver
- connect ICP2 to USB

8.3 ICP2-GANG Setup

Install ICP2-GANG according to "ICP2-GANG Quick Start" manual

8.4 ICP2-COMBO Setup

Install ICP2-COMBO according to "ICP2-COMBO Quick Start" manual

8.5 ICP2-Portable Setup

Install ICP2-Portable according to "ICP2-Portable Quick Start" manual

8.6 ICP2/ICP2(HC) Software Setup

- Run "ICP Win.exe" Program
 - Double-click "ICP_Win" icon
 - Press "Yes" if message "Newer firmware is available. Upgrade now?" appears
- Run "Programmer/Quick Start Wizard" and follow the Wizard

8.7 FTDI Driver Latency

ICP2-Portable(G3) programmer operates with FTDI USB driver. Default latency of the driver is set to 16ms which slows down the programmer operation. ICP for Windows automatically tries to set the latency to 1ms, but it may not work. In this case change the latency as follows:

- Option 1 run ICP for Windows as Administrator (click and hold right mouse button)
- Option 2 change latency manually:
 - enter Control Panel → System → Device Manager → Ports (COM & LPT)
 - select USB Serial Port (COMx) \rightarrow Port Settings \rightarrow Advanced
 - change Latency Timer to 1ms (recommended) or 2ms
 - press OK
 - restart your PC if it was prompted

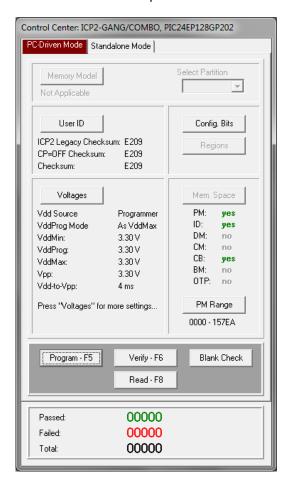
9 (Placeholder Paragraph)

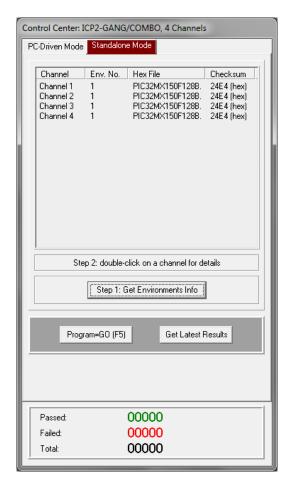
10 Checksum Calculation and Programming Buffers

ICP family software calculates HEX file checksum (CS) as follows (referred as "Checksum" or "ICP2 Legacy Checksum"):

- <u>Unprotected</u> CS is calculated according to Microchip® programming specifications (as MPLAB or MPLAB X)
- In contrary to the programming specifications, <u>protected</u> CS is calculated as unprotected one.
 MPLAB/MPLAB X calculates it according to the specifications that makes the result CS nearly unusable

Rev: 8.8.1a Jul-2018 Page 9 of 35


(flash CS is not calculated at all)


Starting from software 8.1.1 (Mar-2017) ICP for Windows displays "CP=OFF Checksum" and "Checksum" as they are expected to appear in MPLAB® IPE

Note that ICP software intentionally <u>doesn't</u> clear programming buffers (it allows to merge partial HEX files), therefore CS may change if you load one HEX file after another

11 Control Center

Control Center has 2 operation modes: PC-driven and Standalone

11.1 Control Center in PC-Driven Mode

Control Center in PC-driven mode allows the following operations:

- Select Memory Model and Partition if applicable for selected device
- Edit User ID
- Edit Configuration Bits
- Select memory space
- Set PM and DM ranges
- Programming, Verification, Blank Check and Read

11.2 Control Center in Standalone Mode

Control Center in standalone mode allows the following operations:

- Get environment information for all channels (button "Get Environment Info")
- View environment details of selected channel (double-click on selected channel)
- Programming
- Get latest results

Rev: 8.8.1a Jul-2018 Page 10 of 35

12 Menu Commands

12.1 File Menu (Alt-F)

Open (Import)... Open a HEX file from disk and load it into buffer memory area

Save the currently loaded file

Save As (Export)... Save the buffer to a HEX file on disk

Save Configuration Save all current settings

Exit Exit the software

12.2 Edit Menu (Alt-E)

Edit/Fill Program Memory Fill an area of the Program Memory with a specified value Fill an area of the Data Memory (EEPROM) with a specified value

Read-only Editors Enable/disable edit of Program and Data Memory buffers

12.3 Environment (Alt-P)

Save Environment As... Save current setup and buffers in environment format (*.pj2)

Transfer Environment to Programmer... Transfer Environment (*.pj2) to programmer

Environment Wizard...

12.4 Serialization Menu (Alt-S)

Disable Disable serialization
Load File Load serialization file
Create File Create serialization file

12.5 Device Menu (Alt-D)

Select a type of device to be programmed

12.6 Programmer Menu (Alt-G)

Select Programmer Select programmer

GANG/COMBO Configuration Select active GANG/COMBO channels (64 max)

Assign Address to GANG/COMBO Box Assign address to currently connected programmer (1-16). See

"ICP2-GANG Quick Start" for details

Quick Start Wizard

12.7 Run Menu (Alt-R)

Program PC-driven mode: program data in the buffer(s) into the device

Standalone mode: activate standalone programming

Verify Verify the data in the device against the data in the buffer(s)

Blank Check Check the data in the device for the blank state
Read Read the device and store the data in the buffers
Program Only Open a window for repeated programming

12.8 Communication Menu (Alt-C)

RS-232/USB/LAN COM Select the desired COM port Connect Connect to the programmer

12.9 Options Menu (Alt-O)

Voltage Set desired voltages

Clock/Data/MCLR(Advanced) Set desired Clock/Data/MCLR parameters

Preferences Select options for programming Firmware Upgrade Execute firmware upgrade

DLL/Command Line Support (D)
 16-bit (dsPIC®/PIC24) Support (P)

- 32-bit Support (X)- Keelog® Support (K)

- Secure Programming Support (S)

Note: Contact Softlog Systems for activation details

Rev: 8.8.1a Jul-2018 Page 11 of 35

12.10 Speed Optimization Menu (Alt-T)

Run Speed Optimization Utility Run a utility that automatically configures the programmer settings for

the optimal speed performance

Optimization Summary Show speed-related summary

12.11 Help Menu (Alt-H)

Read me Display "Readme_w.txt" file

About Connect with the programmer and display software and

firmware versions

13 Shortcuts

Ctrl-S Save Ctrl-O Open... Program F5 F6 Verify Blank Check F7 F8 Read **Programming Only** F9 Menu F10 Close Window Ctrl-F4 Exit Alt-F4

14 Preparing and Transferring Environment to Programmer

14.1 Prepare and Transfer Environment with Wizard

- Run "Environment/Environment Wizard" and follow the Wizard
- Select programmer and press "Next"
- ICP2-GANG/ICP2-COMBO only: select GANG channels and press "Next"
 ICP2-Portable only: select environment number and press "Next"
- Select Device

From the "Device" list select a device to be programmed and press "Next"

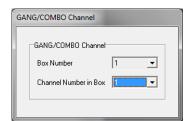
- Set Voltages and press "Next"
- Set Preferences and press "Next"
- Load (open) a HEX file.

NOTE: The programmer software is able to read User ID, data memory (EEPROM), OTP and configuration bits from the HEX file

- Load serialization (SER) file (optional) and press "Next"
- Save Environment
 - Press on "..." button
 - Type in environment name, 16 characters max
 - Press "Save"
 - Press "Next"
- Transfer Environment to Programmer
 - Press on "Transfer Environment" button, select your environment and press "Open"
 - Wait until environment is transferred to all channels
 - Press "Next"

Rev: 8.8.1a Jul-2018 Page 12 of 35

- Switch to Standalone Mode
 - Press on "Standalone Mode" button
 - Press "Finish"
- · Your system is ready for standalone programming
- View the transferred environment as shown in Paragraph 15

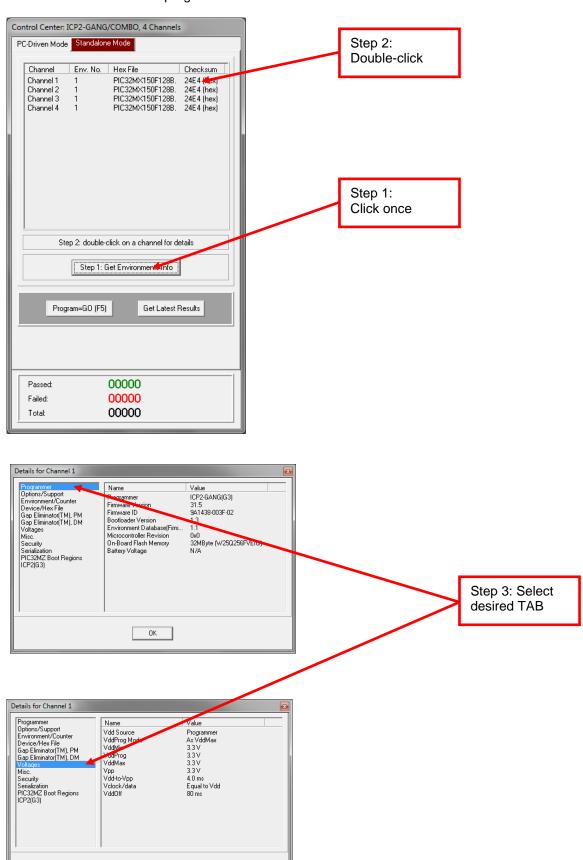

14.2 Prepare and Transfer Environment Manually

Options → Preferences and Serialization dialogs are not available with the Environment Wizard therefore manual procedure below is recommended in several cases (disable Enhanced ICSP, etc.):

- Validate that your device name is selected correctly
- Change voltages, clock frequency and other parameters if required
- Load your HEX
- Change preferences (example): Options → Preferences → uncheck ICSP
- Load serialization file (if required): Serialization → Load File
- Save environment: Environment → Save Environment As...
- Transfer the saved environment file PJ2: Environment → Transfer Environment to Programmer...

14.3 ICP2-GANG and ICP2-COMBO: Transfer Different Environments to Different Channels

- Create different environment files *.PJ2, for example Env1.pj2, Env2.pj2, Env3.pj2 and Env4.pj2 as specified in 14.2 (don't transfer)
- Select single channel mode: Programmer → Select Programmer → ICP2-GANG(Single) / ICP2-COMBO(Single)
- On the pop-up window select desired channel, for example channel 1



- Transfer Env1.pj2: Environment → Transfer Environment to Programmer...
- Repeat 2 steps above for channels 2, 3 and 4 with Env2.pj2, Env3.pj2 and Env4.pj2
- Restore GANG selection: Programmer → Select Programmer → ICP2-GANG/ICP2-COMBO

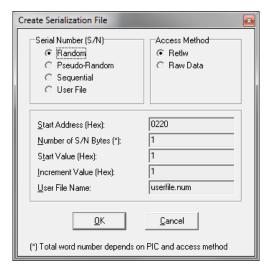
Rev: 8.8.1a Jul-2018 Page 13 of 35

15 Viewing Environment

An environment inside the programmer can be viewed as shown below

Rev: 8.8.1a Jul-2018 Page 14 of 35

OK


16 Serialization

16.1 Create Serialization File

- Select "Serialization/Create File" to generate a serialization file
- Enter the following data:
 - Serial Number (serialization scheme): random, pseudo-random, sequential and user file
 - Start Address. The address should be valid for the device
 - Number of S/N Bytes. Enter number of bytes (1 to 8) for your serial number

WARNING: Total number of result words (addresses) depends on the device and access method

- Start Value. Enter the start value (1 to 16 hex digits). If the start value is greater than the maximum value for the number of bytes selected the most significant digits will be truncated. The start value must differ from zero for pseudo-random scheme.
- Increment Value. Valid for the sequential scheme only
- User File Name. Valid for "user file" scheme only
- Access Method. Select Retlw or Raw Data

Press OK to save a serialization file

NOTES:

- A currently selected serialization file will be updated after any successful programming for single-channel programming and after any programming attempt for ICP2-GANG/ICP2-COMBO
- The "retlw" opcode ("retlw" access method) will be automatically generated for a selected type of devices, i.e.:
 - 08(Hex) for low-end microcontrollers (12C5xx, etc)
 - 34(Hex) for mid-range microcontrollers (16C/Fxxx)
 - b6(Hex) for high-end microcontrollers (17C7xx)
 - 0c(Hex) for enhanced microcontrollers (18Fxxx)
 - 054(Hex) for 16-bit devices (pattern: 0000_0101_0100_kkkk_kkkk_dddd)

16.2 Serialization File Example 1

SerializationScheme = 2 (0-Random, 1-Pseudo-Random, 2-Sequential, 3-User File)

StartAddress = 0005 (Hex) NumberOfWords = 2 (Hex)

CurrentValue = 000000000001234 (Hex)

 $\begin{array}{ll} Increment Value & = 1 \ (Hex) \\ User File & = user file.num \\ \end{array}$

AccessMethod = 0 (0-retlw, 1-raw data)

The following program memory locations will be updated as follows:

Rev: 8.8.1a Jul-2018 Page 15 of 35

PIC16xxx

0005: 3434 0006: 3412

PIC12C5xx

0005: 0834 0006: 0812

16.3 Serialization File Example 2 (User File Scheme)

SerializationScheme = 3 (0-Random, 1-Pseudo-Random, 2-Sequential, 3-User File)

StartAddress = 0005 (Hex) NumberOfWords = 2 (Hex)

CurrentValue = 000000000001234 (Hex)

IncrementValue = 1 (Hex) UserFile = File1.num

AccessMethod = 0 (0-retlw, 1-raw data)

User file should contain serial numbers in HEX radix, for example:

1111

2222

3333

4444

5FC1

The user file will be updated by placing semicolon (;) at very beginning of the string, for example:

; 1111

; 2222

3333

4444

5FC1

If your numbers start from very beginning of the string the 1-st digit will be replaced by semicolon:

;111

;222

3333

4444

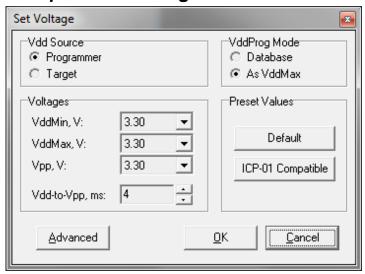
5FC1

16.4 Enable Serialization

Select "Serialization/Load File" to activate serialization

16.5 Disable Serialization

The serialization will be disabled in the following cases:


- "File/Open..." command is executed
- "Serialization/Disable" command is executed
- "Edit/Read-only Editors" is set to edit mode
- "Run/Read" command is executed
- a new device is selected
- user's serialization file is empty
- Control Center switches between PC-driven and standalone modes

16.6 Standalone Serialization

- Make all settings (select device, voltages, etc.)
- Load a HEX file
- Select "Serialization/Load File" to activate serialization
- Create an environment by "Environment/Save Environment As..."
- Transfer the environment to programmer

Rev: 8.8.1a Jul-2018 Page 16 of 35

17 Options → Voltages

17.1 Vdd Source and VddProg Mode

The programmer executes operations at the following Vdd voltages

###	Vdd Source	VddProg Mode	Vdd during Programming	Vdd during Verify	Vdd during Blank Check	Vdd during Read
1.	Programmer	Database	Database	VddMin, VddMax (Note 2)	VddMin	Database
2.	Programmer	As VddMax	VddMax (Note 1)	VddMax	VddMax	VddMax
3.	Target	Any	Target	Target	Target	Target

Notes:

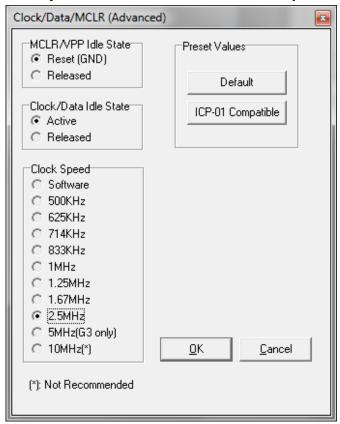
- 1) Use "As VddMax" mode if you want to change default programming voltage
- 2) Set VddMin=VddMax to disable the 2-nd verification pass

17.2 Vpp Voltage

The Vpp voltage is the same for all the operations

17.3 Vdd-to-Vpp Delay

Delay between Vdd and Vpp can be in range 0.1...250ms. It is recommended to use default delay of 4ms to correctly enter the programming mode. Longer delays may be useful if the Vdd line has high capacitance (more than 200uF) which causes the Vdd to rise slowly


17.4 ICP-01 Compatibility

Press on "ICP-01 compatible" button forces the following settings:

Vdd Source: Programmer
 VddProg Mode: Database
 Voltages: Database values

Rev: 8.8.1a Jul-2018 Page 17 of 35

18 Options → Clock/Data/MCLR(Advanced)

18.1 MCLR/VPP Idle State

Reset (GND): Programmer permanently keeps MCLR in reset state (GND) when no operation

Released: Programmer releases MCLR with weak pull-down of about 160KΩ

18.2 Clock/Data Idle State

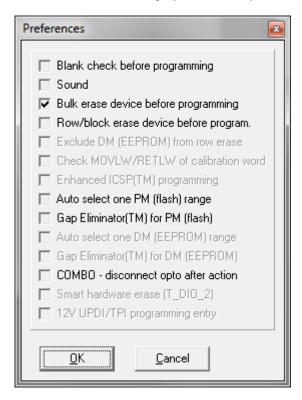
Active: Programmer configures data/clock pins as outputs when no operation Released: Programmer releases data/clock with weak pull-downs of about 300ΚΩ

18.3 Clock Speed

10MHz is not recommended

18.4 ICP-01 Compatibility

Press on "ICP-01 compatible" button forces the following settings:


MCLR/VPP Idle State: Reset (GND)Clock/Data Idle State: Active

- Clock Speed: Software (100KHz-1MHz, depends on device family)

Rev: 8.8.1a Jul-2018 Page 18 of 35

19 Options → Preferences

NOTE: some items are grayed out if they are not supported by a selected device

19.1 Blank check before programming []

Enables/disables blank check operation before device programming. This option is not useful for flash devices

19.2 Bulk erase device before programming [x]

When the option is ON the device will be automatically erased by bulk erase mechanism **HIGHLY IMPORTANT:**

- this option must be set to ON for proper operation with most of devices
- it's the only option to erase code protected device

19.3 Row erase device before programming []

When the option is ON the device will be automatically erased by the row erase mechanism **IMPORTANT:**

- row erase can't erase a code protected device
- available for several devices

19.4 Exclude DM (EEPROM) from row erase []

When the option is ON the DM (EEPROM) is excluded from row erase procedure NOTES:

- available for several devices, may be useful to preserve EEPROM
- DM (EEPROM) space should be excluded from operation (see Memory Space on Control Center)

19.5 Check MOVLW/RETLW of calibration word [x]

When the option is ON an opcode of the calibration memory is tested during programming NOTE: available for devices which have a calibration word with movlw/retlw opcode (PIC12F519, PIC12F675, etc.)

Rev: 8.8.1a Jul-2018 Page 19 of 35

19.6 Enhanced ICSP™ Programming [x]

When the option is ON the device is programmed/verified using Enhanced ICSP™ method (much faster)

NOTE: available for most of dsPIC33/PIC24 devices. PIC32 always uses Enhanced ICSP™ therefore this option is grayed when PIC32 is selected

IMPORTANT: a pull-down resistor is required for Enhanced ICSP™ of dsPIC33/PIC24 devices – see paragraph 0

IMPORTANT - Enhanced ICSP™ limitations (Microchip® silicon issues):

- PGEC3/PGED3 programming pair does not work on several devices check Microchip® errata
- Enhanced ICSP™ may not work if "Windowed WDT" is enabled

19.7 Auto select one PM (flash) range []

When the option is ON one optimum PM range is selected. This feature is similar to "Allow programmer to select memories and ranges" from other programmer/debugger manufacturers

19.8 Gap Eliminator™ for PM (flash) [x]

When this option is ON ICP family programmer automatically excludes <u>multiple</u> empty (blank) PM areas in the HEX file from the programming process, resulting in shortened programming time. See paragraph 20 for more details

19.9 Auto select one DM (EEPROM) range []

When the option is ON one optimum PM range is selected. This feature is similar to "Allow programmer to select memories and ranges"

IMPORTANT: Due to different silicon read/write protection mechanisms the DM (EEPROM) may be not erased before programming for several devices, therefore test your device before going to production. If it is then don't enable this feature

19.10 Gap Eliminator™ for DM (EEPROM) [x]

When this option is ON ICP family programmer automatically excludes <u>multiple</u> empty (blank) DM areas in the HEX file from the programming process, resulting in shortened programming time. See paragraph 20 for more details

IMPORTANT: Due to different silicon read/write protection mechanisms the DM (EEPROM) may be not erased before programming for several devices, therefore test your device before going to production. If it is then don't enable this feature

19.11 COMBO: disconnect opto after action []

When the option is ON the ICP2-COMBO opto-relay barrier will be disconnected after programming/verification/blank check/read

19.12 Smart hardware erase (T_DIO_2) []

Applicable to devices with hardware erase (currently Cortex M7 SAM E/S/V). If the option is ON then hardware erase is executed if no communication with the device (if communication is OK then bulk or row/block erase is done)

19.13 12V UPDI/TPI programming entry []

When the option is ON 12V entry method is used for devices with UPDI or TPI interface. **IMPORTANT**: validate that your hardware is designed for 12V on UPDI or MCLR pin

Rev: 8.8.1a Jul-2018 Page 20 of 35

20 Gap Eliminator™

20.1 Overview

The Gap Eliminator™ enables end customers to exclude empty (blank) flash and EEPROM areas in the HEX file from the programming process, resulting in shortened production cycles and reduced manufacturing costs. This powerful feature is available in all of Softlog's in-circuit programmers

20.2 How It Works

In addition to the critical data they carry, HEX files may also contain multiple empty areas (gaps). These gaps may come at the beginning, in the middle, or at the end of the HEX file. Thus, when programming a microcontroller, the empty bytes of a HEX file are also burned onto the microcontroller. In order to "skip" these gaps, a typical programmer usually allows the operator to define a single programming range, thus enabling two empty areas to be skipped at the beginning and end of the file. However, if the gap(s) are located between valid data areas (see example below), this is not an effective solution.

Softlog's Gap Eliminator™ feature solves this problem. Before a production run, it automatically analyzes the HEX file and effectively removes multiple gaps (up to five) from the Program Memory (flash) and Data Memory (EEPROM). This significantly reduces programming time for mass production operations.

20.3 Example of HEX File with Gaps

Memory size = 4096 bytes (address range 0x0000...0x0FFF)

Gaps are highlighted in yellow; valid data in green

As noted, a typical programmer allows you to define one range 0x0080...0x0FFF (3968 bytes), skipping the empty area at the beginning of the file. This reduces the size of the HEX file by 128 bytes (3.2%).

Using a Softlog ICP programmer with the Gap Eliminator™ feature, three programming ranges can be defined for this example:

- 0x0080...0x01FF (384 bytes)
- 0x0800...0x09FF (512 bytes)
- 0x0FF8...0x0FFF (8 bytes)

This effectively eliminates all the gaps and reduces the size of the HEX file to be programmed by 3,192 bytes (77.9%).

Rev: 8.8.1a Jul-2018 Page 21 of 35

21 Speed Optimization Utility

The Speed Optimization Utility is a Wizard that guides the user through the ICP programmer configuration settings to ensure optimal speed performance. These settings include Clock/Data speed, Vdd-to-Vpp delay, VddOff delay, Gap Elimination, Enhanced ICSP™ and more.

Enter "Speed Optimization → Run Speed Optimization Utility"

22 Configuration File

The ICP setup is saved in a configuration file named "icp01.cfg".

IMPORTANT: the program reads a configuration file that is located in a directory which specified in "Start in" property. This approach allows creation of unlimited configurations on the same PC

Normally, a configuration file should be **not** modified by a text editor.

23 Command Line Parameters (GUI)

Some parameters can be loaded from the command line:

<Hex file> - hex file to be loaded

/c<Configuration file> - configuration file to be loaded, overwrites local "icp01.cfg"


/s<Serialization file> - serialization file to be loaded

/p - production mode (one-touch operation)

Examples:

- Start in the production mode and load file "hex1.hex":
 <path to ICP_Win.exe> /p hex1.hex
- Start in the production mode and load hex file "hex1.hex" and serialization file "ser1.ser":
 <path to ICP_Win.exe> /p hex1.hex /sser1.ser

"Start in" property should specify a directory where "hex1.hex" and "ser1.ser" are located

Rev: 8.8.1a Jul-2018 Page 22 of 35

24 DLL Functions

ICP family programmers can be run from the user's application using powerful set of DLL functions. See document "DLL Description.pdf" for details

25 Command Line Interface (non-GUI)

ICP family programmers can be run from the user's application using full-featured command line interface. See document "ICP Command Line.pdf" for details

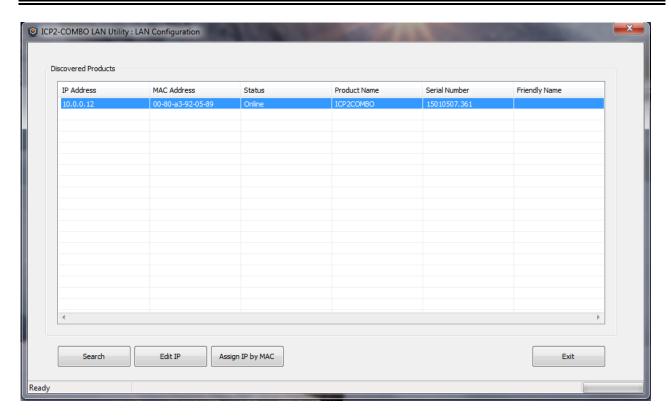
26 Secure Programming

Your hex files contain business-critical intellectual property that could be compromised during the contract manufacturing process. Utilizing patent pending technology, our Secure Programming feature provides several layers of protection that dramatically reduce the risk of unauthorized reconstruction of hex data. See document "Secure Programming Utility User's Manual.PDF" for more details

27 Standard LAN Configuration

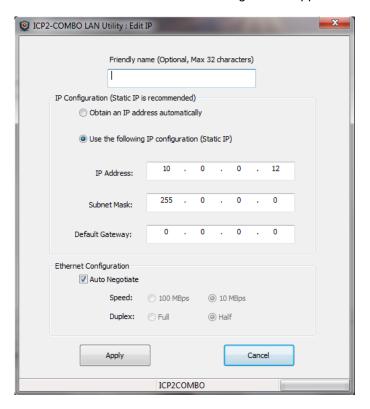
To install and run the software supplied, follow the steps below:

- Insert ICP family CD in the CD-ROM drive. An opening screen appears
- Click "ICP LAN Configurator" and follow the on-screen instructions
- Connect ICP2-COMBO programmer to the same Ethernet network as your PC:
 - use straight cable for connection via network hub or switch
 - use crossover cable for direct connection to the PC
- Run "ICP-LAN" application that is located under C:\Softlog\lcpLan. An opening screen appears:


The "ICP-LAN" application provides 2 configuration features:

- "LAN Configuration" which discovers ICP2-COMBO programmers and changes IP network parameters
- "COM Port Redirection" which creates a virtual COM (CPR) port for ICP2-COMBO programmer

27.1 LAN Configuration

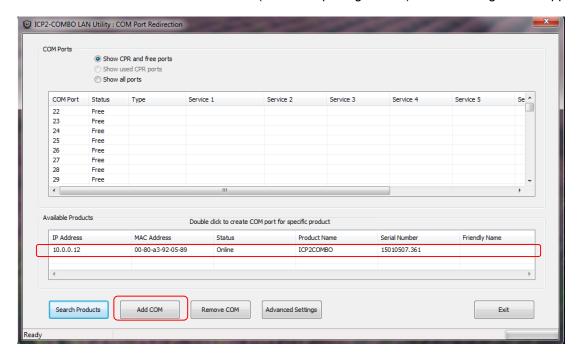

- Click "LAN Configuration" button
- The application automatically starts discovering programmers. You can retry by clicking "Search" button
- The following screen appears:

Rev: 8.8.1a Jul-2018 Page 23 of 35

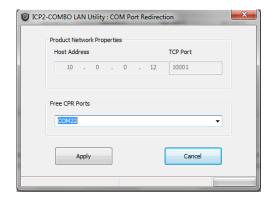
NOTES:

- verify that detected product serial number is the same as printed on the ICP2-COMBO sticker
- if your device was not found refer to "Advanced IP Configuration" below (paragraph 28.1)
- if status of discovered device is "Unreachable", reconnect the power to the device and retry searching, otherwise refer to "Advanced IP Configuration".
- Select (highlight) the discovered ICP2-COMBO programmer
- Click "Edit IP" button. The following screen appears:

Rev: 8.8.1a Jul-2018 Page 24 of 35

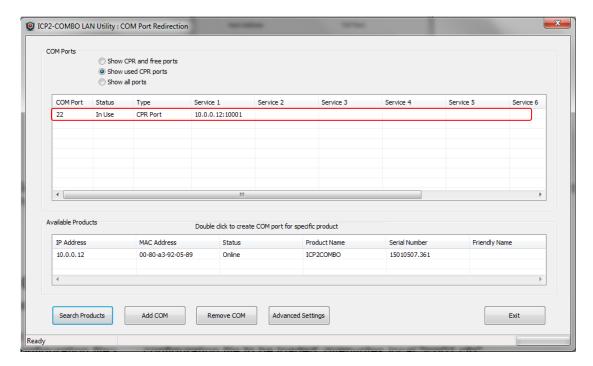

· Change your settings if required

NOTES - the following settings are recommended:


- assign a friendly name to ICP2-COMBO, for example "COMBO-12 for tester 4"
- use static IP for convenient operation with a virtual CPR COM port
- Press "Apply". Wait until operation is complete (may take about 1 minute)
- Press "Exit"

27.2 COM Port Redirection

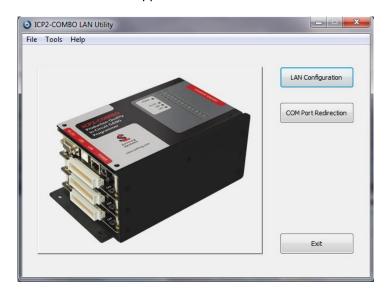
• Click "COM Port Redirection" button (from the opening screen). The following screen appears:



- Select (highlight) the discovered ICP2-COMBO programmer on the bottom list
- Click "Add COM" button. The following screen appears:

 Select desired COM port number and press "Apply". COM Ports list on "COM Port Redirection" window will refresh automatically:

Rev: 8.8.1a Jul-2018 Page 25 of 35

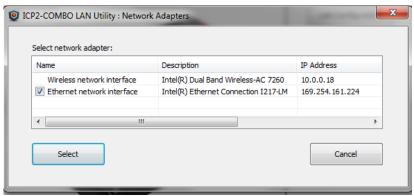

Press "Exit"

28 Advanced LAN Configuration

28.1 Advanced IP Configuration

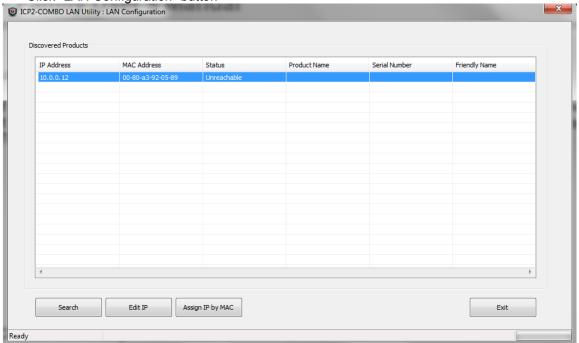
If your ICP2-COMBO programmer is not found or is unreachable, perform the following steps:

• Run "ICP-LAN" application



 If your PC has several network adapters, select the adapter which ICP2-COMBO programmer is connected to:

Rev: 8.8.1a Jul-2018 Page 26 of 35


 $select \ Tools \rightarrow Options \rightarrow Select \ Network$

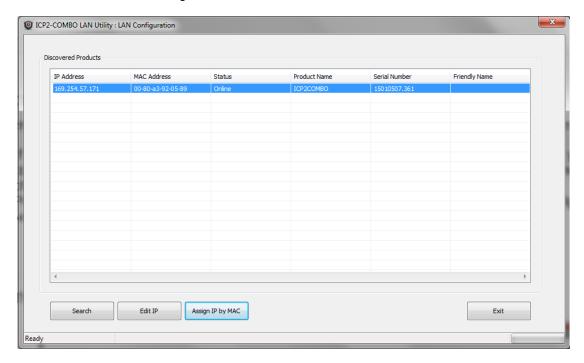
The following screen appears:



· Select desired network adapter and press Select

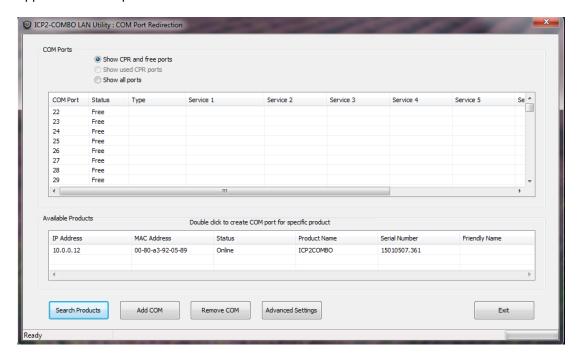
Click "LAN Configuration" button

Click "Assign IP by MAC" button:

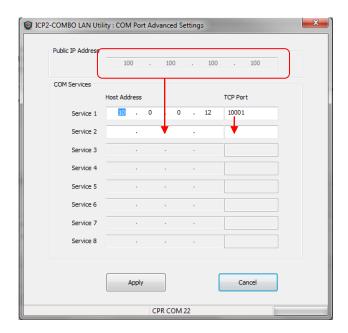


Enter MAC address manually according to sticker printed on the ICP2-COMBO chassis

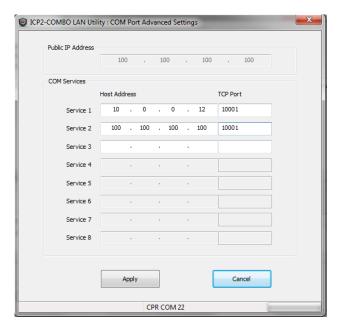
• It is recommended to choose "Obtain an IP address automatically" radio button


Rev: 8.8.1a Jul-2018 Page 27 of 35

- Press "Apply" button. Wait until the procedure is finished (it may take about one minute)
- Once done, "LAN Configuration" window refreshes its list

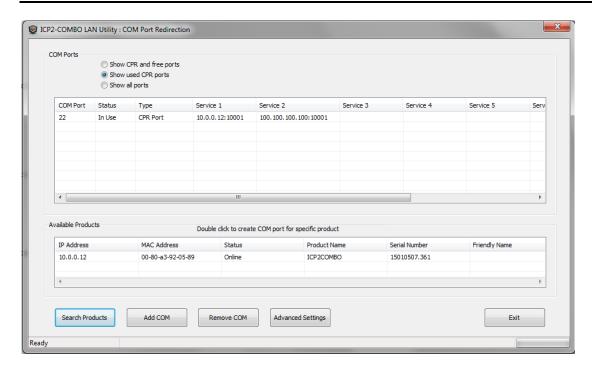

28.2 Advanced CPR Configuration

There is a possibility to apply additional services to the created CPR port or to change parameters of the existing service. For example, you can add service with host address equal to public (external) IP address of your Ethernet network in order to access ICP2-COMBO programmer remotely. Up to 8 services can be applied to a CPR port.



- Select (highlight) the discovered product on the bottom list
- Click "Advanced Settings". The following screen appears:

Rev: 8.8.1a Jul-2018 Page 28 of 35



• Copy public IP address and TCP port as shown above

Press "Apply"

Rev: 8.8.1a Jul-2018 Page 29 of 35

Press "Exit"

29 Manual Production Mode (One-Touch Operation)

The production mode is a powerful option for volume programming

The following steps should be done to correctly prepare the software for programming in the production mode:

- Create a subdirectory (C:\FILE_HEX)
- Copy your CFG, HEX and SERIALIZATION files to FILE_HEX subdirectory (for example: "hex1.hex" and "ser1.ser")

NOTE: serialization file is optional

- Change ICP_Win shortcut property "Start in" to C:\FILE_HEX
- Change ICP_Win shortcut property "Target" to C:\...\ICP_Win.exe hex1.hex /sser1.ser /p
- Double-click ICP_Win icon for programming

The program will be terminated in the following cases:

- Communication error
- Hex file error
- Serialization file should be loaded (/s appears) but loading is failed

30 In-Circuit Programming

Standard in-circuit programming is done through 5 wires (VDD, GND, CLOCK, DATA and VPP)

30.1 Vdd

Maximum Vdd current consumption by the application circuit :

ICP2/ICP2-GANG/ICP2-COMBO: 250mA
 ICP2(HC): 1000mA
 ICP2-Portable (with power supply 12V): 100mA

 Maximum Vdd capacitance: 1000-10000uF. For ICP2/ICP2-GANG/ICP2-COMBO, increase Vdd-to-Vpp delay by about 20ms for every 1000uF

Rev: 8.8.1a Jul-2018 Page 30 of 35

NOTE: If your circuit has low current consumption (less than 10mA) in conjunction with high capacitance (more than 100uF), the load resistor (100-510 Ohm) must be connected between Vdd and GND pins of the programmer for faster discharge of Vdd capacitor

30.2 Vpp

```
Vpp recommended load (ICP2/ICP2-GANG/ICP2-COMBO/ICP2-Portable): > 1KOhm, < 33nF
Vpp recommended load (ICP2(HC)): > 100 Ohm, < 100nF
```

WARNING: due to high VPP requirements ICP2-Portable may be not suitable for OTP devices

30.3 CLOCK and DATA

CLOCK/DATA recommended load(ICP2/ICP2-GANG/ICP2-COMBO/ICP2-Portable): > 3.3KOhm, < 33pF CLOCK/DATA recommended load(ICP2(HC)): > 50 Ohm, < TBD nF

30.4 Delay between Vdd and Vpp

This delay should be as short as possible (default 4ms is recommended)

NOTE: for more details contact Softlog Systems to obtain "ICP2-GANG Specification"/ "ICP2-GANG(G3) Specification", "ICP2-COMBO Specification"/ "ICP2-COMBO(G3) Specification", "ICP2 Specification" and "ICP2-Portable Specification"/ "ICP2-Portable Specification""

31 Target Cable

Softlog Systems recommends to use the following cable between ICP family programmer and target device:

- Length: as short as possible, less than 50cm
- Structure: unshielded separate wires
- Low-pass filter: 22-47pF between CLOCK and GND <u>as close as possible</u> to the target microcontroller is recommended, especially for long cables (> 20cm)

32 Appendix A: Power Supply

ICP family programmers (excluding ICP2-Portable) are shipped with their own power supplies. If the user wishes to connect his/her own power, make sure the following specifications are met:

Programmer	Output Voltage	Output Current	Center Terminal, 2.1mm
ICP2-GANG	12VDC	1.5A	"+"
ICP2-COMBO	12VDC	5A	"+"
ICP2	12VDC	0.5A	"-" or "+"
ICP2(HC)	12VDC	1.5A	"-" or "+"
ICP2-Portable	12-15VDC	0.5A	"-" or "+"

33 Appendix B: Return Values (Errorcodes)

enum AUTO_ERROR_LEVEL { //return values AUTO OK = 0, //operation OK AUTO_DB_ERR = 1, //database error AUTO_COM_ERR = 2, //communication error AUTO_VDD_ERR = 3, //Vdd overload error AUTO_VPP_ERR = 4, //Vpp overload error AUTO_HEX_ERR = 5, //HEX file loading error AUTO_SER_ERR = 6, //serialization file error AUTO VER ERR = 7, //verification error AUTO_ERR_NO_SPACE = 8, //no space selected AUTO_SAVE_ERR = 9, //file save error AUTO_SOCK_ERR

AUTO_SOCK_ERR = 10, //socket communication error (obsolete)
AUTO_I2C_ERR = 11, //UUT I2C communication error
AUTO_DLL_ERR = 12, //DLL programming is not supported

AUTO_KEY_ERR = 13, //key generation error AUTO_CFG_ERR = 14, //config. file error AUTO_COM_NUM_ERR = 15, //invalid COM number

Rev: 8.8.1a Jul-2018 Page 31 of 35

AUTO_COM_BUSY_ERR	= 16, //selected COM is busy
AUTO_COM_BAUD_ERR	= 17, //invalid baud rate
AUTO_COM_NO_OPEN	= 18, //can't open COM port
AUTO_USER_CANCEL	= 19, //user cancel
AUTO_IN_PROGRESS	= 20, //operation in progress
AUTO_BC_ERR AUTO_OP_NOT_ALLOW	= 21, //blank check error = 22, //operation not allowed for selected programmer
AUTO_GF_NOT_ALLOW AUTO_FW_INVALID	= 22, //operation not allowed for selected programmer = 23, //firmware invalid-firmware upgrade needed
AUTO_24LC_ADDR_ERR	= 24, //24LC01 address (offset) is out of range
AUTO_DM_ADDR_ERR	= 25, //DM range error
AUTO_FIRM_ERR	= 26, //firmware version error
AUTO_NO_SUB	= 27, //no ICP-SUB PCB
AUTO_NO_SUP_KEE	= 28, //no keeloq support
AUTO_NO_SUP_DSPIC	= 29, //no dsPIC support
AUTO_ICP2_REQ AUTO_DEV_ERR	= 30, //ICP2 required = 31, //device selection error (unspecified error)
AUTO_DEV_ERR AUTO_PROG_MISMATCH	= 31, //device selection error (unspecified error) = 32, //mismatch between selected and detected programmers
AUTO_PRJ_INVALID	= 33, //Invalid environment
AUTO_PRJ_DB_FIRM_PC_MIS	= 34, //mismatch between PC and firmware database
AUTO_PRJ_DB_FIRM_AT45_MIS	= 35, //mismatch between environment and firmware database
AUTO_DLL_SUPPORT_REQIURED	= 36, //obsolete: "GO" pressed on hardware and no DLL/standalone support
AUTO_PRJ_CS	= 37, //environment CS error
AUTO_STA_IDLE	= 38, //programmer is idle or standalone operation can't be started
AUTO_STA_BUSY AUTO ENV ERR	= 39, //standalone operation: programmer busy = 40, //environment file error
AUTO_PM_RANGE	= 40, //environment me enror = 41, //invalid PM range specified
AUTO_SEC_SUPPORT_REQUIRED	= 42, //Security support required
AUTO_SEC_CNT_INTEG	= 43, //Future: Security feature: integrity error in counter
AUTO_SEC_CNT_ZERO	= 44, //Future: Security feature: counter = 0
AUTO_SEC_NO_FUNC	= 45, //Future: Security feature: function does not exist
AUTO_SEC_PACK_ERR	= 46, //Future: Security feature: packet error
AUTO_SEC_EEPROM_FAIL	= 47, //Future: Security feature: EEPROM error
AUTO_SEC_ANTI_SCAN AUTO_SEC_SEC_ID_CMP	= 48, //Future: Security feature: anti-scan activated, = 49, //Future: Security feature: incorrect Security ID
AUTO_SEC_PASSW_CMP	= 49, // uture: Security reature: incorrect security rb = 50, //Future: Security feature: incorrect password
AUTO_SEC_BATCH_CMP	= 51, //Future: Security feature: incorrect batch
AUTO_SEC_VERS_ERR	= 52, //Future: Security feature: version error
AUTO_SEC_UNKNOWN_ERR	= 53, //Future: Security feature: unknown error
AUTO_NO_ROW_ERASE	= 54, //row erase is not supported
AUTO_INVALID_PARAM	= 55, //invalid parameters
AUTO_MOVLW_RETLW_CALIB	= 56, //no movlw in calibration word
AUTO_NO_USUAL_ENV_TRAN AUTO_SEC_BUF_START_ADDR	= 57, //Usual environment can't be sent if a secure one inside = 58, //sec. buf. properties error: incorrect start addr
AUTO_SEC_BUF_END_ADDR	= 59, //sec. buf. properties error: incorrect end addr
AUTO_SEC_BUF_PAGE_START	= 60, //sec. buf. properties error: incorrect page start
AUTO_SEC_BUF_PAGE_SIZE	= 61, //sec. buf. properties error: incorrect page size
AUTO_SEC_BUF_NOT_EVEN	= 62, //sec. buf. properties error: length not even
AUTO_SEC_BUF_NO_DM	= 63, //sec. buf. properties error: no DM in PIC
AUTO_SEC_BUF_LAST_PAGE	= 64, //sec. buf. properties error: last PM page can't be used
AUTO_SEC_BUF_NO_16BIT_SUP AUTO_SEC_BUF_NOT_MODULO_3	= 65, //sec. buf. properties error: no Script 1 for 16-bit devices = 66, //sec. buf. properties error: length not modulo 3
AUTO_SEC_EMPTY_MASK	= 67, //Security feature: empty mask for secure environment
AUTO_TEST_COM_NO_SUPPORT	= 68, //ICP2 test command not supported
AUTO_TEST_NACK	= 69, //ICP2 test command returns NACK
AUTO_NO_SUP_P32	= 70, //no PIC32 support
AUTO_PIC32_BUSY_OR_DAMAGED	= 71, //PIC32 is busy or damaged
AUTO_PIC32_CP_OR_DAMAGED	= 72, //PIC32 is code protected or damaged
AUTO_PIC32_PE_ANSWER AUTO_PIC32_PE_VERSION	= 73, //PIC32 programming executive: no answer = 74, //PIC32 programming executive: incorrect version
AUTO_SEC_BUF_NO_32BIT_SUP	= 74, //Pic32 programming executive. incorrect version = 75, //no security support for PIC32
AUTO CNT ZERO	= 76, //non-secure (low-endurance) counter is 0
AUTO_SQTP_CONFLICT	= 77, //serialization from PC is not allowed if standalone serialization=ON
AUTO_INVALID_DEVICE_CFG	= 78, //invalid device number in CFG file. Use latest DLL
AUTO_DEV_ID_NO_SUPPORT	= 79, //Device ID read is not supported for the family
AUTO_ROW_PM_RANGE	= 80, //invalid PM range due to row size
AUTO_PE_MISMATCH	= 81, //Programming executive: mismatch between environment and firmware
AUTO_PE_NO_PGD_PULLDOWN AUTO_PE_VER	= 82, //No pull-down on PGD line = 83, //PE verification failed
AUTO_PE_NO_IN_ENV	= 84, //PE does not present in environment
AUTO_PE_CALIB	= 85, //invalid calibration/diagnostic data
AUTO_PC_DRV_STA_CONFLICT	= 86, //conflict between PC-driven and standalone modes
AUTO_CALIB_WORD_1_CORRUPT	= 87, //Calibration word 1 corrupted during programming
AUTO_CALIB_WORD_2_CORRUPT	= 88, //Calibration word 2 corrupted during programming
AUTO_ENV_NUM_OUT_RANGE	= 89, //Specified environment number is out of range
AUTO_CYBL_ACQUIRE_TIMEOUT AUTO_CYBL_SROM_ACT_TIMEOUT	= 90, //Device acquire timeout = 91, //SROM operation timeout
AUTO_CYBL_VIRGIN_DEVICE	= 92, //Device is VIRGIN

Rev: 8.8.1a Jul-2018 Page 32 of 35

```
AUTO_CYBL_SWD_ACK_FAULT
                                    = 93, //ACK response for SWD transfer is not OK
AUTO_NO_FIRMWARE_CYBL
                                    = 94, //no firmware for CYBL10x6x
AUTO_NO_FIRMWARE_I2C
                                    = 95, //no firmware for I2C
AUTO NO FIRMWARE DSPIC
                                    = 96, //no firmware for dsPIC
AUTO_NO_FIRMWARE_P32
                                    = 97, //no firmware for PIC32
AUTO_G3_REQUIRED
                                    = 98, //G3 (ICP3M) is required for selected device
                                    = 99, //PIC17C is not supported by G3 (ICP3M)
AUTO_G3_NO_PIC17C
AUTO_RESERVED_100
                                    = 100, //reserved
AUTO_DEMO_ERR
                                    = 101, //demo version
AUTO_OTP_NOT_BLANK
                                    = 102, //OTP area is not blank, no programming is allowed
AUTO_OTP_VER_ERR
                                    = 103, //OTP verification error
AUTO_FBOOT_VER_ERR
                                    = 104, //FBOOT verification error
AUTO_DUAL_PART_ILLEGAL_BUF
                                    = 105, //illegal partition mode in programming buffer
AUTO_DUAL_PART_MISMATCH
                                    = 106, //partition mode mismatch
AUTO_NOT_ALLOWED_IN_DUAL
                                    = 107, //operation is not allowed in dual partition mode
AUTO_DUAL_PART_ILLEGAL_PIC
                                    = 108, //illegal partition mode in PIC
AUTO_FBOOT_BLANK_ERR
                                    = 109, //FBOOT blank check error
AUTO ENV SIZE ERR
                                    = 110, //environment size is too big for connected programmer
AUTO_GANG_COMBO_MISMATCH
                                    = 111, //mismatch between ICP2-GANG and ICP2-COMBO
AUTO_SWD_DEVICE_PROTECTED
                                    = 112, //SWD device is protected
AUTO_DEVICE_PROTECTED
                                    = 112, //Device is protected (same errorcode as for AUTO_SWD_DEVICE_PROTECTED)
AUTO_SECURITY_BIT_VER_ERR
                                    = 113, //Security bit verification error
AUTO_CANT_CONNECT_TO_UUT
                                    = 114, //can't connect to UUT (target)
AUTO_SINGLE_WORD_RD_NO_SUP = 115, //single word read not supported
AUTO_SINGLE_WORD_WR_NO_SUP = 116, //single word write not supported AUTO_ERASE_WRITE_TIMEOUT = 117, //erase or write timeout
AUTO_UPDI_TINY_CRC_FAULT
                                    = 118, //CRC fail. Execute programming with enabled bulk erase
AUTO_CANT_CONNECT_TO_UPDI
AUTO_CANT_CONNECT_TO_TPI
                                    = 119, //can't connect to UPDI UUT (target)
                                    = 120, //can't connect to TPI UUT (target)
AUTO_FTDI_LATENCY_BIG
                                    = 121, //FTDI latency is too big
```

34 Appendix C: DEBUG and COE Bits

A compiler may provide incorrect settings for debug-related bits: DEBUG (Background debug) and/or COE (Clip-on emulation mode). Development tool as MPLAB® IDE manipulate these bits automatically while ICP family software loads them from a HEX file "as is".

The following procedure is strongly recommended to validate these bits:

- Run MPLAB IDE
- Compile in "Release" mode
- Export the HEX file (File→Export) under a name (for example) "1.hex"
- Import HEX file "1.hex" (File→Import")
- Write down the checksum
- Run "ICP for Windows"
- Open "1.hex"
- Compare checksums
- Inspect configuration bits. If DEBUG or COE are set to debug mode then change them to operational
 one
- Save an updated buffers: File → Save As(Export)...

35 Appendix D: System Debug Procedure

- Validate that your programming cable is OK
 - Clock (pin 3) and Data (pin 4) are not swapped
 - VPP/MCLR comes from pin 6
 - If possible then use separate short wires (less than 20cm during debug)
- Debug the system in PC-driven mode which provides much more info
 - Switch the Control Center to PC-driven mode
 - For ICP2-GANG/COMBO only: enter Programmer → Select Programmer → ICP2-GANG/COMBO (**Single**)
 - For ICP2-GANG/COMBO only: on the popup window select desired channel
 - Connect your target to the selected TARGET connector

Rev: 8.8.1a Jul-2018 Page 33 of 35

- Validate that the correct PIC is selected
- Load your HEX
- Enable (faster) or disable Enhanced ICSP programming (Options → Preferences)
- Execute programming
- If the problem still exists then send the following info to support@softlog.com:
 - Screenshot of entire screen including status line
 - Verification error screen
 - Electrical circuit, at least connections to VDD/MCLR/CLOCK/DATA
 - Description of the programming cable:
 - length (should be as short as possible)
 - cable type (separate unshielded wires are recommended)

36 Revision History

- Revision 8.8.1a (Jul-18):
 - added reference to ICP2-Portable(G3) programmer
 - added reference to devices with new interfaces (UPDI, TPI, etc.)
 - added new Preferences
- Revision 8.1.1a (Mar-17):
 - added reference to G3 programmers: ICP2(G3), ICP2-GANG(G3) and ICP2-COMBO(G3)
- Revision 4.16.1a (Jan-16):
 - added maximum COM port warning
 - added description of manual environment procedure (preferences and serialization, different environment for different channel)
 - added system debug procedure
- Revision 4.13.1a (Jan-15):
 - changed ICP software setup destination (new: C\Softlog\..., old: C:\Program Files\Soft-Log)
 - added ICP2-COMBO related info
 - added checksum calculation explanation
 - added LAN description
- Revision 4.12.1 (Aug-13):
 - added warning for serialization dialog see 16.1
 - corrected example 16.2
 - added warning for ICP2-Portable see 30.2
- Revision 4.10.2 (Aug-12):
 - added "Speed Optimization Utility" paragraph
 - added "Gap Eliminator™" paragraph
 - added new Preferences
- Revision 4.9.2 (Apr-2012):
 - added description of Enhanced ICSP limitations see 19.6
 - changed appearance of "Preferences"
- Revision 4.9.1 (Jan-2012):
 - added description of "Enhanced ICSP™"
 - GO/PASS/FAIL outputs specified as optional for ICP2-Portable
- Revision 4.8.2 (Aug-2011):
 - added description of "raw" serialization method, serialization screenshots updated
- Revision 4.8.1 (Jul-2011):
 - added Preference "Automatically select PM (flash) range"
 - added standalone serialization see 16.6
 - added paragraph "Viewing Environment" see 15
 - added paragraph "Debug and COE Bits" see 34

37 Technical Assistance

You may contact Softlog Systems for technical assistance by calling, sending a fax or e-mail. To help us give you quick and accurate assistance, please provide the following information:

Software version number, firmware version number and product serial number (if available). This
information is displayed at the program start

Rev: 8.8.1a Jul-2018 Page 34 of 35

- Detailed description of the problem you are experiencing
- Error messages (if any)
- Microcontroller part number (if device-related)
- Send us your "icp01.cfg" file

38 Warranty

Softlog Systems (2006) Ltd. warrants this product against defects in materials and workmanship for a period of 1 (one) year. This warranty will not cover programmers that, in the opinion of Softlog Systems, have been damaged due to abuse, improper use, disassembly, replacement of parts or attempted repair by anyone other than an authorized Softlog Systems service technician.

This product must be returned to the supplier for warranty service within the stated period. The buyer shall pay all shipping costs and other charges or assessments for the product by the supplier.

Softlog Systems shall not be liable for any indirect, incidental, or consequential damages, regardless of whether liability is based upon breach of warranty, negligence, strict liability in tort, or any other theory, Softlog Systems will never be liable in an amount greater than the purchase price of the products described by this express warranty. No agent, distributor, salesperson, or wholesale or retail dealer has the authority to bind Softlog Systems to any other affirmation, representation, or warranty concerning these goods.

39 Contact

Softlog Systems (2006) Ltd.

6 Hayotzrim St. Or-Yehuda 6021820 Israel

Phone: 972-3-9515359 Fax: 972-3-9527520 Web: www.softlog.com

E-mail: sales@softlog.com, support@softlog.com

40 Copyright Notice

Windows is a registered trademark of Microsoft Corporation. Microchip, MPLAB, PIC, dsPIC and ICSP are registered trademarks of Microchip Technology Incorporated.

Rev: 8.8.1a Jul-2018 Page 35 of 35